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Abstract

The important features of a woollen yarn that are included ia this mode!

A stochastic model is introduced for predicting the siress-sirain curve of a woollen yarn under longitudinal extension.

are the distributions of fibre length, diameter and strength,

the effect of fibre reversals, the variation in linear density and twist along the fength of a yarn, the radial variation in fibre packing,
and the non-uniform arrangement of fibres in any particular yarn cross-section. The key deformation mechanisms within the model
include variation in the swwess between and atong individual fibres, fibre breakage, fibre slippage, non-uniform strain along the
yarn, and twist flow within the extending varn. It is shown that the mode] can predict with reasonable accuracy the tenacity of
woollen yarns which are made from fibres with a wide range of properties, and which contain a wide range of twist leveks.

1. INFRODUCTION

It is well known that siaple fibre yarns, particularly those
made from natural fibres, have highly variable structures.
This variation is present al several levels, Along any staple
yarn there are variations in focal lincar density and twist.
This results in vartation in the packing density of fibres
along the yarn. On a smaller scale, there may be large
variations in the length, cross-sectional area and strength of a
yarn’s constituent fibres. If a yarn is made from a blead of
differcnt fibre types. there may be large differences in
physical properties between fibres. Even along a single fibre
there may be large varialions in cross-sectional area and
local breaking stress.

This irregular siructure results in complicated mechanical
behaviour.  There are several important rnechanisms
involved in the tensile behaviour of stapie fibre varns. As a
yarn extends there is uneven sirain along, and twist
redistribution within the structure.  There is also lateral
movement of fibres towards the yarn axis. Within the yarn
individual fibres may partially or completely slip relative 1o
the rest of the structure; the degree of this slippage depends
on conditions which change as the yarn extends. Furthermors
individual fibres break as the varn extends. Ultimate yarn
rupture is due to a combination of fibre slippage and fibre
breakage.

The theoretical mechanics of staple fibre yarns has heen the
subject of intense research activity, Previous workers have
developed models 10 predict the tension [Hearle, 1965:
Carnaby and Grosberg, 1976; van Luijk et al., 1985] and
torque [Tandon et al., 1995] of a staple yarn undergoing
longitudinal extension. Although there has been considerable
progress towards understanding the mechanical behaviour of
staple yarns, none of these models is capabie of accuralely
predicting their tensile behaviour.

Despite the obvious importance of structural variation on
mechanical behaviour, previous yarm models cssentially
neglected this variation when analysing yarn mechanical
behaviowr. In  particutar, they ifgnored the effect of
longitudinal yarn frregularity. Only comparatively simple
models [Zhurek, 1960; Mardle, 19811 of the effect of
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longitudinal irregularity on the mechanical properties exist:
these models take no account of the complicated mechanisms
involved in staple yarn deformation,

This paper presents a stochastic model of the lensile
behaviour of an irregular siaple yarn. This mode! includes
the effect of structural variability, and considers the
following important mechanisms within an exiending staple
fibre yarn: uneven strain along a yamn, twist flow within a
yarn, non-uniform lateral fibre movement, fibre breakage
and fibre slippage.

2. FIBRE MODEL

Fibres in the model yarp structure may be of different types,
each having different physical properties. Let ¢ denote the
number of different fibre types in the structure. The discrete
probability distribution function of the nsmber of the fibres
of type & in the yarn structure is given by 7. That is, for
k=1,..q, T, is the proportion by number of fibre type &k

in the yarn,

Each fibre is assumed to have a circular cross-section, and a
constant diameter afong its length. Any two fibres may vary
in their length and diameter, aven if they have the same fibre
type. Wilh some natural fibres, fibre length is correiated with
fibre diameter. For this reason the fibre fength (length
biased) and diameter distributions of fibre type & are
represented with a bivariate probability distribution function,
L.

Each fibre is considered to consist of a number of fibre
segments of equal length { <&__ arranged in series, where
Lmax 18 the maximum length of a fibre segment, and is a
parameter of the yarn model. Given the length of a fibre, 1,
the length of a segment withir this fibre is given by {=1/v,
Fibre
strength is modeiled using the “weakest-link” hypothesis
[Picree, 1926}, which states that the strength of a fibre can he
represented as the minimum of the statistically independent

strengths of its fibre segments. It is assumed that the
breaking stress of a fibre segment is independent of its

where v is the smallest integer such that (/v <, .



diameter, The breaking stress distribution of fibre segments
of length { that are of type & is represented by B, .

3 INITIAL YARN STRUCTURE

The yarn is modelled as a series of segments of equal length.
Let O be the length of the yarn whose tensile behaviour we
are simulating, and let ¥V he the number of yarn segments that
will be used to model the behaviour of the yarn. Then the
initial length of a single segment, A,. is given by

Ag=Q/N.

Within each yarn segment, the linear density and twist are
assumed to be constant, but between segmenis they may
vary. In general, the linear density and twist in a short yarn
segment are correlated, with twist tending to be higher at
points of low linear density. The distribution of linear
density and twist in short yarn segments also depends on the
segment length, with both the variance of segment lincar
density and that of segment twist decreasing wilh an
increase in segment length. For this reason, the linear density
and twist of yarn segments of length A are modelled by a
hivariate probability distribution function, V, . The linear
density and twist are generated independently for each yarn
segment.

4. INETIAL YARN SEGMENT STRUCTURE

A yarn segment is modelled by considering all fibres that
pass through its central cross-section, All fibres are assumed
to lollow helical paths which are centred on the yarn axis and
have the same pitch. The pitch of the hetical paths are taken
to be equal 1o the length of a single turn of twist.

Fibres passing through a yarn cross-section are crdered in
increasing distance hetween the yarn axis and the outermost
edge of the fibre. Let f, denote the i-th fibre in this
ordering. Because fibres are assumed to be circular, and to
follow helicai paths, the distance between the yarn axis and
the outermost edge of f; is given by 5, = r; +; /2, where

fi

and L, is the diameter of f;.

is the distance between the axis of f, and the yarn axis,

An important concept in characterising the structure of a
yarn is that of a radial packing ratio. Consider a cross-section
of a yarn. The proportion of the boundary of the circle of
radivs #, centred on the yarn axis, thal intersects fibre is
called the fibre packing ravio at r of this cross-section. In
this yarn model it is assumed that the initial fibre packing
ralio varies between yarn segments, and that it is a function
of hoth the initial linear density, W, and the initial twist, T, of
a yarn segment. For a given fibre blend, the initial fibre
packing ratio at #is given by Qg r(r).

The local packing ratio of the fibre £, ¢, is the ratio of the

area of f, in the yarn cross-seciion to the arca of the annulus

:
formed between 5,_, and 5. The arca of the intersection
between f, and the yarn cross-scction is approximaiely that

of an ellipse with a minor axis of |1, /2. and 2 major axis of

949

i, /{2cose;), where o is the helix angle of the path of

f- Hence we have

4y = e (1)
4{5; =S5t Jeoso;

where 5, =r +u; /2, fori=1...,n,and 5 = 0.

Given the initial fibre packing ratio of the yarn segment,
Sy (), the model determines the initial radial position of
each fibre so that the resulting structure approximaiely
achieves this packing ratic, In general, it is not possible to
determine the radial positions of a series of fibres with
random diameters so that the resulting structure will match
exacily an imposed fibre packing ratio function. The model
approximates &y r{r) by ensuring that for sach /, the area

of intersection between the first f fibres and the yarn cross-
section is equal to the expected area of fibre within a radius
5; from the yarn centre, as calculated from ¢y 7 (). This is

achieved by an iterative process. The first fibre 1s placed so
that the area of f, in the cross section is equal lo the

expected area of fibre in the circle of radius 5, . That is,

rsih, = znﬂ‘ oy r(rhrdr. 2

Each subsequent fibre is added so that the area of fibre f; in
the cross section equals the expected area of fibre that should
be epcountered in the annulus with inner radivs s, and

outer radius 5;. Thus

als! = sl = ZKJ-X' Qo (ryrdr . 3)

Generating the fibres in the initial yarn structure is an

irerative process. Set sy =0, and suppose the properties of

the first i-1 fibres have already been determined. In order to

generate the properties of f; the following sieps are carried

out:

e The fibre iype of f,. k. is randomi generaied' from T,
The fibre length, |/, iy,
randomly generaied from L, .

and fibre diameter, are

s The breaking stress of each fibre segment in f; is
independently randomly generated from B, ., where £;
is the length of a segment of f;.

s The radial position of f; is found by solviag (3) for r,.

This procedure is repeated while the linear density of the

gencrated yarn cross-section is less than the desired linear

density, w. That is, the procedure stops afier the a-th

iteration if

a1 1 n 2
LY RH Yy
SEn PR W
deosty; dcoso;
feed ! =} !
where v, is the density of fibre type k.
Each fibre is assumed to intersect the yarn ¢ross-section at a

random point aiong its length. Each fibre is also assumed to
be initially stress-free.

! All random variables are randomby generated from she approprate
distribution using the inverse transform method {Law and Kelion, 19821



5, S5TAPLE YARN MODEL

Consider the yarn structure as modelled in Section 2. In
order to determine the tension-extension and torque-
extension hehaviour of this structure, it is subjected o a
series of cxtensions by a small length 1. Suppose that the
propetties of the yarn structure are known after the (k- 1) -
th incremenial yarn extension, and we are inlerested in
finding the properties of the yarn structure after the &-th
incremental yarn exiension.

Let A, be the length of the j-th yarn segment after the k-th
incremental yarn extension, and let A?Lj—fk be the difference

between the length of the j-th yarn segment after the k-th
incremental yarn extension and the initial length of the j-th
varn segment. That is,

Mhie=hip~hg (5)
As the total exlension in the yara structure after the k-th
incremental extension must be &, we have

N
DAk, =k
=1

Similardy. let €, be the nurnber of radians of twist in the j-

(6)

th segment after the k-ih incremental yarn exiension, and et
48, be the difference between the number of radians of

twist in the j-th segment after the k-th incremental yarn

extension and the number of radians of twist in the
undeformed j-th yarn segment, 8, . That is,
AR, =8, ~8,. (7)

We assume that the yarn ends are not free to rotate during
yarn extension, which s the case during the praciical 1esting
of yarn strength. Hence there can be no change in the sotal
turns of twist in the yarn structure during extension. That is

N
3 A8, =0.
J=1

{8)

Let the tension and lorque in the j-th segment after the k-th
incremental yarn extension be denoted by F,, and M,
respectively. For equilibrium, both the tension and the torque
must be constant along the length of the yarn at any yamn
extension. Hence alter the &-th incremental yarn extension
we must have

Fie=Fig e

VY

M}-IJ\' = MM- '

foreach j=2,...

The tension and lorque in the j-th segment after the k-th
incremental yarn extension are determined from the positions
and strains in the fibres in the segment at the end of the
{k ~13-th incremental extension, and from A, , and 8,

using the mode! described in Cassidy et al. [1996]1. In order
to determine the length and radians of twist in each segment
after the &-th incrementzl yarn sxtension, it 15 necessary to
0. (9 and (10) for all A, and 8,

solve jio
Fe {12, N} . This is a system of 2¥ non-linear equations

in 2N unknowns.
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Having determined the propertics of the yarn structure at the
end of the k-th incremental yarn extension, this process is
repeated untii the tension in the yarn returns to zero. In this
way the tension-extension and torque extension curves of a
particular moedel yars structure are determined.

To simulate the properties of the tension-exiension and
torque-extension curve distribution, statistics must be
coliected from the iensile curves generated from a number of
randemly generated yarn structures.

6. EXPERIMENTAL WORK

In order to investigaic the relationship between fibre
properiies and the siress-strain curves of woollen yaras, nine
fibre blends were manufactured into woollen yams, Six of
these were wool blends selected for their mean fibre
diameter and mean (barbe) length after carding. Blends with
three Ievels of mean fibre diameter (20, 30 and 36 um), each
at two levels of mean fibre length alier carding (30 and 70
mm) were selected, Two more blends were selecied based on
their core bulk; these were a high bulk down wool blend. and
a low bulk lusire wool blend. Finally, to investigale the
properties of yarns containing a mixture of fibre types, a
typical 80% wool 20% nylon carpet blend was also
manufactured into yarn. Each blend was spun inte four yams
with twists of 150, 200, 230, and 300 tpm. Bach yarn had a
linear density of 200 tex.

The yarn tensiie were determined on a Zwick 1510 varn
tensile  testing machine (Zwick GmbH & Co., Ulm,
Germany). This machine did not have the ability to record
the entire tension-extension curve. In order to record the
entire curve a CRIO datalogger (Campbell Scientific Inc.,
North Logan, USA) was connected to the Zwick. The CRI0
measured the potential difference at a gauge on the Zwick
which gave the percent of maximum joad that the strain
gauge was under. The voltage at this point varied lincarly
from zero volts when the strain gange was unloaded, to one
volt when it was at [00% of maximurn load. The Zwick was
operated in the 0-20 N load range. Thus the potential
difference at the point measured by the CR10 was 1.0000 V
when the tension between the sample jaws of the Zwick was
20,00 N. The CRI0 recorded the voltage at this peint in
increments of 0.66 mV with a frequency of 16 Hz. The
datalogger was connecied to a notebook computer. After
every series of twenty-five tensile tests the results were
downloaded from the CRID to the computer and saved to
file.

All tests were carried out on conditioned specimens in a
conditioned atmosphere of 6322% relative humidity at 20°C.
All specimens were conditioned for at least 24 hours prior (o
testing. The gauge length used for all tests was 0.5 m, and
the strain rate used for all tests was 100% per minute. This
gauge tengih and strain rate are those used in the commercial
testing of yarn strength, For each yarn 25 tesis were cartied
out on each of 2 cones of the yarn.

The maximum precision of the method used (o record the
stress-sirain curves was £0.03 N for the maximum tension,
and £0.002 for the breaking strain. The difference between
the maximum tension recorded by the Zwick and that



determined from the data recorded by the CRIG was in 99%
of the yarn tests less than 0.03 N, and that for breaking strain
was in 99% of the varn tests less than 0.004. These results
compare well with the precision limitations of the method
used to tecord the tension-extension curves. These small
differences were not of practical significance to this work.

7. NUMERICAL EVALUATION OF THE MODEL

The system of equations represented by (7)., (9) and {10) are
difficult to solve. As a result of fibre slippage and fibre
breakage, these equations are not linear, continuous, or path
independent. A variety of techaiques were used in order to
solve this system in an acceptable amount of time,

7.1 Newton’s type meihods

The methods most ofien used in this work were Newton'’s
type methods for non-linear systems. Two differen: methods
were used. These were Newtons method and Broyden's
method {Press et al., 1993]. Both methods were modified by
a hinc scarch algorithm [Press et al, 1993]. While these
methods offer guadratic convergence for smooth conlinuous
functions when the initial guess is close to the actual root,
they can suffer from poor convergence when these
conditions are not met.

Broyden’s and Newton’s methods are used to sclve the
system of equations in the following way. Suppose we are
trying to solve the system for the 4-th incremental yarn
extension. Initially, Broyden’s method is used to uy and
soive the system of equations using the change in segment
length and twist that occurred during the (k- [}-th
deformation as the tnitial guess of the solution. This initial
guess is called the constant deformation guess, and is given
by

A= haa O A

8, =0, +0 800

N . For the evaluations of the mode!

(1)

for each j=1,...,
reported in this paper, the convergence criterion used 1o
determine a solution was

Fogp-F_
E LkF i }.kl <]OM4‘
Ik an
M -
l gk M ui <1074
Mi.k
for all j£1{23... M), and the maximum number of

iterations that werc used lo find a solution was 5+ N . If
Broyden's method with this initial guess fails to converge (o
a solution after this number of iterations, then Broyden's
method is used with a different initial guess, called the
uniform deformarion guess. The uniform deformation guess
is given by

G, =8, (12}

I after 3+ N iterations Broyden’s

1
Aojp =h oy +—
ik IS N

for each j=1... N
method with the uniform initial guess also fails to converge
to a solution, then Mewion's method with the constamt
deformation guess ig used wo find a solution. Finally, if after
S+ N iterations Newton’s method with the constant initial
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guess also fails to converge to & solution, then Newton's
method with the uniform deformation guess is used to find a
sofution.

If after this procedure no solution has bgen found, then the
attempted yarn extension is reduced by a factor of 1/2, and
the four approaches of the previous paragraph are attempted
again in turn. If no solution is again found, then the
attempled yara extension is reduced by a further factor of
1/2, and these four approaches tricd again. If after this
procedure no solution to the system of equations has been
found, ther a different solution technique s used: simulated
annealing.

If ar any stage a solution is found which resuits in an
attempted deformation that is too large in terms of the
change in segmeni extension or segment iwist, then the
incremental yarn strain is reduced by a factor of 1/2, and
another solution is astempted using the method described
above.
7.2  Simulated annealing

Simutated annealing is an optimisation technique that can be
used on cost functions with arbitrary degrees of
nonlinearities, discontinuities, and stochasticity, and where
the cost function domain is restricted by arbitrary boundary
conditions [Ingber, 1993]. This technique was used in this
work to solve the system of equations when the continuous
methods based on Newton's method failed to converge 1o a
solution.

There are a wide range of simulated annealing type methods,
see Ingber [1993] for a review. The method of Press et al.
[1992] was used in the work described in this paper. This is
hased on a modificaiion of the downhill simplex method of
Nelder and Mead {1965].

For applying this simulated annealing method to the yam
model, the temperature Twas defined as

- 2 jx“"“ = “"2 jn-i.k

The 2N ~1 points in 9%“"’ which formed the injtial simplex
were taken to be the constant deformation guess, and the
2N points taken by increasing ihe attempted deformation in
each component of this guess in turn by 50%. A solution was
taken 1o be  amy  point with  temperature

—-1 : . . - . .
T<{2N -2} % 107", This convergence criterion is in

(13)

general more restrictive than thal used for the Newton's
methods.

One of the problems with simulated annealing type methods
is the difficulty of specifying a successful annealing
schedule [Press et al,, 1993]. The annealing schedule refers
t0 the number of moves that are made at each temperature,
and the rate at which the temperature is reduced. For the
evatuations of the mode] whose resulis are presenied in this
paper, the initial temperature was taken to be 10 times the
highest function value of any point on the initial simplex.
One hundred moves were iaken at each temperature, after
which the temperature was reduced by a factor of 0.9. In



addition, after every 700 moves the point on the simplex
with the highest function value was replaced by the point
with the lowest function value ever found (if this point was
not already a member of the simplex). While this annealing
schedule was probably somewhat conservative, it proved
successful in solving the system of cquations in an
acceptable time in the majority of cases.

If this simulated annealing method also fails 1o find &
solution of the equations, the step with the lowest
temperature  found using this method was used. This
provided a mechasism for taking the best possible small step
over a point where a solution that met the convergence
crileria could not be found. Such steps were rare; less than
10% of all model evaluations resulted in such a step being
taken. if three such bad sieps were taken in & row, then the
programme lerminated with an appropriate error message. In
every case that this was a result of a rapid increase in strain
in one segment and a reduction In strain in the other
segments. Combined with a rapid reduction in yarn lension,
this was effectively due to the onset of yarn rupture. This
maodel is in general not capable of prediciing the tension and
torque of a yarn beyond the onset of rupture - this process
occurs over very short times and goes beyond the
assumptions of statics into the realm of dynamics.

8. MODEL VALIDATION

8.1  Single segment model

When the yars model was evaluated with only one yarn
segment, it was called the single segment model. Te compare
the results of the single segment mode} with the experimenial
resuits, 10 stress-strain curves were predicted using the
properties of each yarn manufaciured in the practical work.
Each curve was predicted up to a strain of 0.2, which was
greater than the breaking strain of any of the yarns tested in
the practical work,

In general, the predicted yarn tenacity increased with
increasing  twist.  This  was in  agreement with  the
experimental observations. As with the measured stress-
strain curves, the rate of increase of tenacity with an increase
in twist was greater for coarse fibre yarns.

The cflect of bulk on predicted yarn tensile properties was
the same as observed in the experimental work. The yamn
modulus decreased with an increase in bulk, as did the yarn
tenacity.

The relationship between the predicted and measured
tenacity of the 36 yarns is shown in Figure {, The predicted
tenacity was in general very close to the measured tenacity
over the eniire tenacity range. The predictions were slightly
higher than the measured values. This was not surprising
considering the expected cffect of yarn wregularity, which
was largety neglected in the single segment model.
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Figure 1. Predicted versus measured mean tlenacity.

8.2  Multiple segment model

When the yarn model was evaluated with more than one yarn
segment it was called the multiple segment model. With the
exception of the number of segments, the evaluation of the
muliiple segment mode! used the same parameters as those
used in the evaluation of the single segment model.

Unfortunately, it was beyond the scope of this work to
perform a fuli validation of the multi-segment model based
on the resuits of the recorded stress-strain curves of alt 36 of
the yarns whosc stress-strain curves were measured. This
was primarily a consequence of the large computational
reguirements of the model. An cvaluation of the single
segment model typically required less than 1 minute of CPU
time or dual 200 MHz Intel PentiumPro processor machine
with 128 megabytes of RAM. In contrast, evaluation of a {0
segment model on the same machine could require over 300
hours of CPU time, depending on the number of fibres
passing through each cross-section and on their length,

For this section of the work it was decided to restrict
attention to predicting the stress-strain properties of a single
yarn, called Yarn 23. This yarn was selected for two reasons.
Firstly, it was made from fibres that were coarse and short:
this means that there were less fibres passing through each
yarn cross-section and that these fibres on average contained
fewer fibre segments. Secondly, it was of intermediate twist,
50 that both fbre slippage and fibre breakage would be
expected to play an important role in its tensile deformation.

Ten stress-strain curves were predicted using a 10 segment
model. The use of 10 segments was somewhat arbitrary.
With larger numbers of segments the time reguired for
computation of the stress-strain curve became impractical on
the computer equipment available. Further tesearch is
required on the effect of the number of segments on the
predictions of this model.



Qualitative comparison of the predicted and measured stress-
strain curves shown in Figure 2 shows that the predicted
curves were very similar to the measured curves at all strain
ievels. The most obvious differences were the slightly higher
moduius of the predicted curves when the strain level was in
the range 0.02 to 0.04, and that one of the predicted curves
had a breaking strain 0.014 greater than any of the measured
curves. The differences in modulus  possibly reflect
differences between the predicted and actual initial fibre
packing ratio.
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Figure 2. The predicted (bold fine) and measured (light lines)
stress-strain curves of Yarn 23. B

The modulus, tenacity, and breaking strain distributions of
the predicted curves were compared statistically with the
distributions of these propertics oblained from the measured
stress-strain curves of Yarn 23. These distributions were
compared with the Kolmogorov-Smimov two-sample test
fPress et ab, 1993], using the KOLMOG2 procedure of
Genstat 5 Release 4.1 (Rathamsted Experimental Station,
Harpenden, U.K.). The attained significance levels of this
test when comparing the modulus, tenacity and breaking
strain distributions were p< 0005, p=032,and p=038

respectively.
e, COMCLUSIONS

In this paper a model is developed which is capable of
predicting the stress-sirain curve of a general staple fibre
varn. Within this model, several of the most important yarn
structural features are described by arbitrary distribution
functions. These include the mass and twist variation along a
yarn, the fibre length, the fibre dizmeter, and the fibre
strength. The initial packing of fibres over any cross-section
is considered Lo be a function of both the local linear density
and twist level. and the core bulk of the fibre material.

953

The predictions of the model are compared with the
experimentally measured stress-strain curves of 36 different
woollen varns. These yarns varied in twist, and the fibres
they were made from varied in diameter, length, core bulk,
and fibre type. Limited evaluation of the full model results in
predicted tenacity and breaking strain distributions that can
not be differentiated from the measured distributions by the
Kolmogorov-Smirnov two-sample test. A comprehensive
validation of a simplified model shows that the model can
predict with reasonable accuracy the tenacity of woollen
yarns which are made from fibres with a wide range of
properties and which contain a wide range of twist levels,
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